
The Union-Find Problem Is Linear

Hantao Zhang∗

Computer Science Department
The University of Iowa
Iowa City, IA 52242
hzhang@cs.uiowa.edu

Abstract

The union-find problem, also known as the disjoint set union problem, involves two oper-
ations, union and find, on a collection of disjoint sets. The worst case time complexity of a
sequence of n such operations was known to be near linear. We prove that its worst case time
complexity is linear. The new proof technique is based on amortized complexity analysis and
transformation. Our proof is substantially simpler than that of the near-linear time complex-
ity analysis appearing in many textbooks.

key words: the union-find problem, amortized complexity, analysis of algorithms

1 Introduction

The union-find problem, also known as the disjoint set union problem, is well-studied in data
structures and algorithms [1]. If we regard initially n objects as n singleton sets, the union-find
problem involves the following two operations.

• find(x): find the representative of the set containing object x.

• union(x, y): union the two disjoint sets containing objects x and y, respectively.

The complexity of the union-find problem is typically measured by the total time required to
perform a sequence of m mixed unions and finds. In general, we cannot have more than n−1 union
operations concerning n objects. If the number of union operations is less than n− 1, then we will
have more than one set at the end of the operations, and in this case, we can divide the operations
into groups according to the final sets and analyze the complexity of each group. Without loss of
generality, we assume that there are exactly n − 1 unions and at least one find operation, hence
n ≤ m. Based on the work of Robert Tarjan [7, 8, 9], it is widely believed that the worst-case
time complexity of m union-find operations grows super-linearly (in terms of m), but linear in
practice. This result was enforced by Michael Fredman and Michael Saks’ STOC’89 paper [3] and
was referred by the well-known wikipedia [10]. In this paper, we correct a mistake of 30 years
by proving that the worst-case time complexity of m union and find operations is linear, both in
theory and in practice.

2 Disjoint-set forests

The best known implementation of the union-find problem is to use rooted trees [6], with each
node containing one object and each tree representing one set. Moreover, the representative of
each set is the root node. To carry out the find(x) operation, we locate the tree node containing x;

∗Partially supported by the National Science Foundation under Grant CCR-0604205.

1

then we follow the parent pointers to the root of the tree. To carry out the union(x, y) operation,
we make the root of the tree containing x as son of the root of the tree containing y.

Based on the tree structure, there are two principal strategies for improving the union-find al-
gorithms: path compression and weighted union [1]. That is, in the find(x) operation, we compress
the path from x to the root as follows: Making all vertices reached during the find(x) operation
sons of the root of the tree. The idea of path compression is first used by McIlroy and Morris [6] in
an algorithm for finding spanning trees. Our result depends solely on the idea of path compression.
Weighted union, including both union by rank or union by height, may improve the performance
of the algorithms, but it does not affect the linear time complexity proof. For simplicity, we ignore
the presentation of weighted union in this paper.

By the abuse of notation, let x denote both an object and the tree node containing that object.
Let p[x] be the parent of node x in a tree; if x is a root, then p[x] = x. Initially, we have p[x] = x
for every object x. The execution of the union and find operations are described by the following
pseudocode [1].

find(x)
1 if (x != p[x] and p[x] != p[p[x]])
2 then p[x] := find(p[x])
3 return p[x]

union(x, y)
Pre: find(x) != find(y)
1 link(find(x), find(y))

link(u, v)
Pre: u != v, p[u] = u and p[v] = v,
1 p[u] := v

The find procedure returns the root of the tree containing x and at the same time compress
the path from x to the root. That is, each call of find(x) returns p[x] in line 3. If x is the root
or its parent is the root, then line 2 is not executed and p[x] is returned at line 3. This is the
case in which the recursion bottoms out. Otherwise, line 2 is executed, and the recursive call with
parameter p[x] returns the root which is also returned at line 3. At the same time, in line 2, p[x]
is updated with the root, thus completing path compression.

3 Complexity analysis

The complexity of find(x) is the same as the distance from x to the root. The complexity of
union(x, y) is dominated by those of find(x) and find(y), as link(u, v) takes only constant time.
For our purpose, we assume that the cost of link(u, v) is one and the real cost of find(x) is either
1 if x is a root node or the distance from x to the root.

We will prove that a sequence of m mixed union and find operations takes O(m) time. Let S0

be a sequence of m operations, a1, a2, ..., am, where ai is either union(x, y) or y := find(x). By
the assumption, n − 1 of these m operations are unions. We will first transform S0 into S1 by
replacing each union(x, y) in S0 by the following three operations:

u := find(x), v := find(y), link(u, v)

Let the resulting sequence be S1. Obviously, the real costs of S0 and S1 are the same and S1 has
m + 2n − 2 operations (n − 1 links and m + n − 1 finds).

Before we go on, given a sequence S of operations, let us the switch of a node x, s(x), in S is an
integer between 1 and |S|. Initially, s(x) = |S1| in S1; its value may be decreased in later sequences.
The find cost of a node x with respect to an integer j is computed as follows: If j ≤ s(x), the find
cost of x is 1; otherwise, it is 2. The adjusted cost of the find(x) operation in a sequence S of

2

operations is computed as follows: Suppose find(x) is the jth operation in S. The adjusted cost of
find(x) is the sum of all find costs of nodes (except the root node) on the find path with respect
to j. It is easy to see that the adjusted cost of the find(x) operation is no less than its real cost
but no bigger than the twice of its real cost. The adjusted cost of a link operation is always one,
the same as the real cost. Formally, let C(S) be the adjusted cost of a squence S, C(a, j) be the
adjusted cost of an operation a with respect to j, and c(x, j) be the find cost of an object x with
respect to j, then

C(S) =
∑p

j=1 C(aj , j) where S = 〈a1, a2, ..., ap〉,
C(find(x), j) = max{1,

∑q−1
i=1 c(xi, j)},where the find path of x is 〈x1, x2, ..., xq〉

C(link(x, y), j) = 1
c(x, j) = if (s(x) ≤ j) then 1 else 2

Obviously, C(S) is an upper bound of the real cost of all operations in S. In the remaining of the
paper, by “cost” we mean “adjusted cost”.

By assumption, there are n − 1 link operations in S1. If link(x, r) is the last link operation,
then r is the root of the tree formed by the n−1 link operations. Moreover, for every node x other
than r, there is exactly one link(x,w) in S1 for some w. No matter how the find operations are
performed in S1, r is always the root of the resulting tree. Let us call r the ultimate root. The
switch value of a node may be decreased when this node is added as a child of r.

Next, we will obtain a series of sequences, S1, S2, ..., Sk, such that C(Si) ≤ C(Si+1) for every
1 ≤ i < k. Later, we will show that C(Sk) is O(m). Hence the real cost of S0 is O(m) because it
is the same as C(S1) and C(S1) ≤ C(S2) ≤ · · · ≤ C(Sk) = O(m).

Starting from S1, for the rest of sequences S2, ..., Sk, it involves the following transformation:
For 1 ≤ i < k, if Si contains

y := find(x), link(u, v)

as two consecutive operations, then Si+1 is the same as Si, except that the above two operations
are swapped, i.e., the two operations are replaced by the following:

link(u, v), y := find(x)

For simplicity, we also require that find(x) must be the last find operation before any link operation
in Si.

The soundness of the above swapping is evident because the precondition of link does not
change during the swap because find(x) does not change the root status of any node, that is, a
root remains a root and a non-root remains a non-root. Moreover, this kind of swaps cannot go on
forever. Once every link operation appears before every find operation in a sequence Si, we arrive
at Sk. Using the idea of bubble sort, we may show that k = O(m2).

Suppose the swapped find(x) operation is the jth operation in Si, and x1, x2, ..., xd are the
nodes added to the ultimate root r by this find operation, then the switch values of those nodes
in Si+1 is set to j, that is, s(x1) = s(x2) = · · · = s(xd) = j; the switch values of other nodes are
the same as in Si. In other words, c(xy, j) is 1 in Ci but 2 in Ci+1 for y = 1, ..., d. This idea is
illustrated by the following example.

Example 1 Let l(x, y) denote link(x, y) and f(x) (with subscripts) denote find(x). Consider
the following sequences of operations by the transformation described above.

s(a) s(b) s(c) s(r) C(Si)
S1 : l(a, b), l(b, c), f1(a), f2(a), f3(b), l(c, r) 6 6 6 6 7
S2 : l(a, b), l(b, c), f1(a), f2(a), l(c, r), f3(b) 6 5 6 6 9
S3 : l(a, b), l(b, c), f1(a), l(c, r), f2(a), f3(b) 4 5 6 6 11
S4 : l(a, b), l(b, c), l(c, r), f1(a), f2(a), f3(b) 3 3 6 6 12

The ultimate root is r and the cost of S1 is C(S1) = 7, which is also the real cost. f3(b) is the
swapped find operation in the transformation from S1 to S2. Since f3(b) brings b to r, s(b) = 5

3

Figure 1: Illustration of the impact of switching link(u, v) and find(x) on the trees. It can be
seen that if v = r, the ultimate root, then the number of children added to r by find(x) in Si+1 is
d (d = 4 in this figure). The cost of find(x) will be d+1 more in Si+1 than in Si because the switch
values of these nodes are set to be the position of find(x) in Si+1. The extra cost will suffice to
cover the difference of later find operations in Si and Si+1. So C(Si) ≤ C(Si+1).

(the fifth operation in S1) in S2 and C(S2) = 9. f2(a) is the swapped find operation in the
transformation from S2 to S3. Since it brings a to r, s(a) = 4 in S3 and C(S3) = 11. Finally, f1(a)
is the last swapped find operation which brings both a and b to r, so s(a) = s(b) = 3 in S4 and
C(S4) = 12. []

The following technical lemma is crucial for the main result of this paper.

Lemma 1 For 1 ≤ i < k, suppose 〈link(u, v), y := find(x)〉 are the two swapped operations in
Si+1, then C(Si) ≤ C(Si+1).

Proof Let the ultimate root be r. If x does not appear in the tree rooted by u, then the swap
has no impact at all on any operation following them in the sequence. If x = u, then the cost of
find(u) is the same in Si and Si+1. In both cases, the swap has no impact at all on any operation
following them, hence C(Si) ≤ C(Si+1).

Now let us consider the remaining situation that x is in the tree rooted by u and x 6= u. Let
the path from x to u be 〈x1, x2, ..., xd, xd+1〉, where x = x1, u = xd+1, d ≥ 1, and p[xi] = xi+1 for
1 ≤ i ≤ d. In both Si and Si+1, the cost of link(u, v) is always one. The length of the find path of
find(x) is d in Si but d + 1 in Si+1. Since x1, x2, ..., xd cannot be children of r (the ultimate root)
in Si, the cost of find(x) is d in Si, and p[xi] = u for all 1 ≤ i ≤ d after its completion. On the
other hand, in Si+1, the cost of find(x) is either d+1 or 2d+1, and p[xi] = v for all 1 ≤ i ≤ d+1.
Figure 1 illustrates the same tree which is changed by y := find(x), link(u, v) in Si (on the left)
and by link(u, v), y := find(x) in Si+1 (on the right).

There are two cases to consider.

4

Figure 2: Illustration of the case 2.1. It can be seen that after completing L and find(u), all the
find operations will have the same complexity.

Case 1: v = r.

In this case, the swapped find(x) operation brings the nodes on the find path of x to the root r
in Si+1. If there exist find operations after the swapped find opertion in Si for these nodes, say
find(xi) (or any node in the subtree rooted by xi), such operations in Si will cost one more than
the same operation in Si+1. To avoid the cost of Si being greater than the cost of Si+1, for Si+1,
we decrease the switch values of these nodes on the find path to increase the cost of find(x). That
is, we set s(x1) = s(x2) = · · · = s(xd) = j, where j is the position of find(x) in Si. The cost of
find(x) in Si+1 is 2d+1, which compensates possible smaller costs of later find operations in Si+1

for x1, ..., xd (or any node in the subtrees rooted by them). As a result, we have C(Si) ≤ C(Si+1)
(Figure 1). Note that this is the only place when we decrease the switch values (thus increase the
find cost) of nodes and these nodes are the children added to the ultimate root by the swapped
find opertion. By assumption, this find operation is the last one before any link operation in Si.
So the find operations appearing after find(x) in Si will not appear in any future swapping. As
a result, the switch value of any node cannot be increased.

Case 2: v 6= r.

Since find(x) is the last find operation before any link operation, Si can be written as S′〈a, a′〉LFi,
and Si+1 as S′〈a′, a〉LFi, where a is y := find(x), a′ is link(u, v), L is a sequence of link operations,
Fi is a sequence of find operations, and S′ is a sequence of mixed operations. Suppose the trees
after completing S′〈a, a′〉L in Si and S′〈a′, a〉L in Si+1 are T1 and T2, respectively (see Figure 2).
For the find(y) operation in Fi, if y is not in the subtree rooted by u in T1, it will have the same
cost and effect in both T1 and T2.

If find(y) is the first operation in Fi, where y is in the subtree rooted by u in T1, there are
two cases to consider:

5

Figure 3: Illustration of the case 2.2. It can be seen that after completing L, find(x1) and find(u),
all the find operations will have the same complexity.

• Case 2.1: y is not in the subtrees rooted by xi in T1.

• Case 2.2: y is in one of the subtrees rooted by xi in T1.

For case 2.1, suppose the sum of find costs for the nodes in the path from v to r is d′ and the
distance from y to u is d′′, then the cost of find(y) is d′ + d′′ + 1 in both Si and Si+1. After
completing find(y), the distance of xi to r is two in both Si and Si+1 for any 1 ≤ i ≤ d. Figure 2
illustrates the case when y = u (d′′ = 0, d = 4). So every find operation of Fi will have the same
cost in both Si and Si+1.

By a similar reasoning, we can also show that C(Si) ≤ C(Si+1) in the case 2.2 (see Figure 3).
Table 1 summarizes the costs of find operations in the proof of this lemma. []

Lemma 2 If every find operation appears before any link operation in Sk, then C(Sk) is O(m).

Proof. At first, note that Sk can be written as LFk, where L is a sequence of n−1 link operations and
Fk is a sequence of m′ = m+n−1 find operations. Since C(L) = n−1, we prove CL(Fk) = O(m′),
where CL(Fk) denotes the cost of Fk after performing L on the initial singleton sets; this task is
similar to the exercise problem 22.3-4 in [1] and we borrow a proof from [11].

Let the tree formed by L be T , which has n nodes and n− 1 edges. Let d(x) be the number of
children that x has in T . For any ith operation of Fk, say find(x), if x = r (the ultimate root),
then its cost is 1. If x 6= r, let the find path for this operation be 〈x, y1, ..., yei , r〉. The cost of this
find operation is no more than 2ei + 2. For any node y other than r, the number of occurrences
of y as yj in the above find path is at most d(y) because if y appears in one find path of Fk, let y′

be the child of y in this path, then y will lose y′ after path compression, so 〈y′, y〉 cannot appear
more than once in the find paths of Fk.

6

Table 1: Summary of the costs of the involved find operations in Si and Si+1 in the proof of Lemma
1. The link(u, v) operation always has cost 1. The find path of find(x) is 〈x = x1, x2, ..., xd, v〉.
In the case 1, v is the ultimate root r. In both cases (2.1) and (2.2), v is not r, and d′ is the cost
of find(v).

Si Si+1

find(x) d 2d + 1
d find(xi) 3d 2d
find(u) 1 1
Total 4d + 1 4d + 2

case 1

Si Si+1

find(x) d d + 1
find(u) d′ + 1 d′ + 1

d find(xi) 2d 2d
Total 3d + d′ + 1 3d + d′ + 2

case 2.1

Si Si+1

find(x) d d + 1
find(x1) d′ + 2 d′ + 1
find(u) 1 2

d find(xi) 2d 2d
Total 3d + d′ + 3 3d + d′ + 4

case 2.2

Hence, assuming er = 0,

CL(Fk) ≤
m′∑
i=1

(2ei +2) = 2m′ +2
m′∑
i=1

ei ≤ 2m′ +2
∑

node x6=r

d(x) = 2m′ +2(n− 1− d(r)) < 2(m′ +n).

So C(Sk) = C(L)+CL(Fk) < n+2(m′ +n) < 2m+4n. Because m ≥ n, C(Sk) is indeed O(m). []

Using the idea stated in the beginning of this section and the above two lemmas, we can easily
prove the following theorem.

Theorem 1 The complexity of a sequence of m mixed union and find operations is O(m).

4 What went wrong

Our result is contradictory to the public belief that the union-find problem is not linear. In his
1975 paper [7], Robert Tarjan proved that the complexity of m operations on n objects, m ≥ n,
is between k1mα(m,n) and k2mα(m,n) for some positive constants k1 and k2, where α(m,n) is
related to a functional inverse of Ackermann’s function and is very slow-growing. In 1979, Tarjan
published a different non-linear proof of the same result, along with other results [8]. In [9], Tarjan
and van Leeuwen analyzed the asymptotic worst-case running time of a number of variants of
the union-find problem, using the result in [8]. On the other hand, several researchers, including
Andrew Yao [12], Jon Doyle and Ronald Rivest [2], and more recently, Wu and Otoo [11], proved
that the expected time of the union-find problem is linear, which is consistent with our result.

In the following, we will examine some potential pitfalls in the proofs of [8]; the reader is
recommended to have [8] at hand.

Let B(i, j) be the function given in [8], where for i, j ≥ 1,

B(1, j) = 1 for j ≥ 1;
B(i, 1) = B(i − 1, 2) + 1 for i ≥ 2;
B(i, j) = B(i, j − 1) + B(i − 1, 2B(i,j−1)) for i, j ≥ 2.

7

Theorem 4.3 of [8]. For any k, s ≥ 1, let T be a complete binary tree of depth d > B(k, s). Let
{vi | 1 ≤ i ≤ s2B(k,s)} be a set of pairwise unrelated vertices in T , each of depth strictly greater
than B(k, s), such that exactly s vertices in {vi} occur in each subtree of T rooted at a vertex of
depth B(k, s). Then for n = 2h+1 − 1 and m = s2B(k,s) there is a set-union problem which

1. the union tree is T ;

2. the set of finds is {find(vi) | 1 ≤ i ≤ m};

3. the answer to each find is a vertex of depth strictly less than B(k, s); and

4.

In [8], the proof of this theorem consists of an induction proof based on the definition of
B(k, s). That is, the first equation of B(k, s) provides the base case; the second equation provides
the inductive proof of case B(i, 1) with case B(i − 1, 2) being the hypothesis; the last equation
provides an inductive proof of the general case with two induction hypotheses on cases B(i, j − 1)
and B(i − 1, 2B(i,j−1)), respectively.

The first pitfall is on the definition of depth d in the theorem. The theorem does not specify
whether it is “for all d > B(k, s)” or “there exists d > B(k, s)”. For the base case proof, we need
the latter, i.e., “there exists d > B(k, s)”. However, in the proof of the inductive cases, the former
was used in [8] for the induction hypotheses.

The second pitfall is on the use of m which is a function of k and s. In the proofs of the
inductive cases in [8], m is assumed to be a constant. That is, the same m is used for both the
proving case and its hypotheses.

We also found a pitfall in the proof of an important corollary of the above theorem.

Corollary 4.1 of [8]. Let k, s ≥ 1. Let T be a complete binary tree of depth B(k, s). Then there is
a set-union problem whose union tree is T , which contains m = s2B(k,s) finds, and which requires
at least (k − 1)m links for its solution.

In [8], the proof goes as follows: Choose l ≥ 1 such that 2l ≥ s. Let T ′ be a complete binary
tree formed by replacing each leaf of T by a complete binary tree of height l. ...

Here is the pitfall of this proof: Suppose T has n vertices. Then T may have n/2 leaves. A
complete binary tree of height l has more than s vertices. So T ′ may have more than n′ = (1+s)n/2
nodes. A linear function of n′ is not a linear function n. Hence, the complexity result on T ′ certainly
does not apply to T .

The lower bound result of [8] uses the above corollary and its validity is certainly in doubt.

Another influential paper on the non-linear lower bound of the union-find problem was presented
by Fredman and Saks at the Twenty-First Annual ACM Symposium on Theory of Computing
(STOC’89) [3]. Theorem 5 of [3] states the non-linear result. The first line of the proof of Theorem
5 says “We consider the case of n Find’s and n−1 Union’s, beginning with n singleton sets”. Then
in the middle of the same paragraph, it says “the Union-Find sequences we consider do not create
sets of size larger than

√
(n), ...” Apparently, this assumption is wrong since n − 1 unions will

create the set of size n. The rest proof is based on this assumption.

5 Conclusion

We have presented a new proof which shows that the complexity of the union-find problem is
linear. This result is better than what we believed in the past thirty years. While our result does
not provide a new algorithm for the union-find problem, the proof of our result is substantially
simpler than the old near-linear proof [1] and will likely save the time for those who study such
algorithms. Since the union-find problem has many applications [1, 10], our result also improves
the complexity of any algorithm using the union-find data structure.

8

Acknowledgment

The author wishes to thank Kasturi Varadarajan, Steve Bruell, and Krzysztof Templin for helpful
comments on an early version of this paper.

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to
Algorithms. McGraw-Hill, 2nd Ed. 2001.

[2] Jon Doyle, Ronald L. Rivest. Linear expected time of a simple union-find algorithm. Inf.
Process. Lett., 5(5):146-148, 1976.

[3] Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic data struc-
tures. In Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing,
pages 345–354, Seattle, WA, May 1989.

[4] Zvi Galil, Giuseppe F. Italiano. Data structures and algorithms for disjoint set union problems.
ACM Comput. Surv. 23(3) 319–344 (1991)

[5] B.A. Galler and M.J. Fisher. An improved equivalence algorithm. Commun. ACM 7(5), 301-
303 (1964)

[6] J.E. Hopcroft and J.D. Ullman. Set-merging algorithms. SIAM j. Comput. 2 (1973) 294–303

[7] Robert E. Tarjan, Efficiency of a good but not linear set union algorithms. J. ACM, 22(2):
215-225 (1975)

[8] Robert E. Tarjan, A class of algorithms which require nonlinear time to maintain disjoint sets.
J. Computer and System Sciences, 18(2): 110-127 (1979)

[9] Robert E. Tarjan, Jan van Leeuwen. Worst-case analysis of set union algorithms. J. ACM,
31(2): 245-281 (1984)

[10] Wikipedia: Disjoint-set data structure.
http://en.wikipedia.org/wiki/Disjoint-set data structure, 2008.

[11] K. Wu, E. Otoo, A simpler proof of the average case complexity of union-find with path
compression. Lawrence Berkeley National Laboratory, Technical Report, LBNL-57527, 2005

[12] Andrew C. Yao. On the expected performance of path compression algorithms. SIAM J.
Comput. 14(1) 129–133 (1985)

9

